Antineutrino Running at MiniBooNE Morgan Wascko, LSU #### Motivation - v running is a subject of much interest - CP violation in v sector - Difference in oscillation probabilities for v, \overline{v} - Major experimental obstacles: - v̄ cross sections not well known - wrong sign backgrounds - v in a \overline{v} beam Asymmetry of \overline{v} , v oscillation probabilities in MiniBooNE verus v oscillation prob. #### Outline - Focus on WS BGs - What MiniBooNE can do with one year of antineutrino running - 2.0E20 POT total - Cross section physics - Oscillations - http://www-boone.fnal.gov/publicpages/ loi.ps.gz - Window of opportunity for a near detector in the Booster Neutrino Beam: - SciBar detector - http://home.fnal.gov/~wascko/scibar.pdf Images of the MiniBooNE horn ### Outline - Focus on WS BGs - What MiniBooNE can do with one year of antineutrino running - 2.0E20 POT total - Cross section physics - Oscillations - http://www-boone.fnal.gov/publicpages/ loi.ps.gz - Window of opportunity for a near detector in the Booster Neutrino Beam: - SciBar detector - http://home.fnal.gov/~wascko/scibar.pdf Comparison of ν_{μ} fluxes Extract 8 GeV protons from Fermilab Booster 1.7 λ beryllium target (HARP results soon!) Reversible magnetic horn Focusses mesons of specific charge Allows antineutrino running! ## Wrong Sign BGs - In neutrino running, wrong sign backgrounds are very small (2%) - In antineutrino running they are much larger (30%) - Cherenkov calorimeters cannot distinguish μ⁻ from μ⁺ - Need a way to extract the WS BGs! ## Wrong Sign BGs - In neutrino running, wrong sign backgrounds are very small (2%) - In antineutrino running they are much larger (30%) - Cherenkov calorimeters cannot distinguish μ⁻ from μ⁺ (event by event) - Need a way to extract the WS BGs! ## Constraining WS BGs - MiniBooNE has developed three methods of constraining the overall fraction of v, \overline{v} - μ direction - μ lifetime - $CCI\pi^{+}$ event selection - Independent constraints - Sensitive to total WS fraction - Not sensitive to energy spectrum of WS events # ws bg Constraints: µ Direction - Softer Q² spectrum for antineutrino events means more forwardpeaked μ - Can fit angular distribution shape and extract RS/WS fractions - Using generated muon directions, can extract WS fraction with 5% uncertainty ## μ Direction - MiniBooNE has very good angular reconstruction for muons - Tested with cosmic muon calibration system - Fit distribution of $$\cos^{-1}(\vec{u}_{MuTr} \cdot \vec{u}_{Fit})$$ $$xe^{-x^2/2\sigma^2}$$ - (projection of a 2D Gaussian) - Account for intrinsic resolution of muon tracker - Angular resolution = 4.0° at 400-500 MeV ### μ Directions - Reconstruction has little effect on this constraint - WS fraction can be measured to 7% with reconstructed angles - Can also use Q² distributions - Similar precision - Stronger constraint - Poorer resolution - Larger uncertainties (currently) ### CC1π+ Selection - Use CCIπ+ event selection: - Tag $\nu_{\mu}^{} C \rightarrow \mu^{} \pi^{+} X$ events with two Michel electrons - π- absorbed by carbon, do not decay - Cannot tag V_μC→μ⁺π⁻X events: only | Michel - Two Michel sample is 85% pure WS - Constrain WS fraction with 15% uncertainty | Neutrino
type | # before
cuts | # after cuts | |---------------------|------------------|--------------| | ν _μ (WS) | 30,539 | 2,525 | | ν _μ (RS) | 71,547 | 461 | | Total | 102,086 | 2,986 | ## μ Lifetime - Use muon decay rate in mineral oil to constrain WS BGs - 8% µ- capture probability on carbon • $$\tau_{\mu-}=2.026\mu s$$, $\tau_{\mu+}=2.197\mu s$ - Can extract WS contribution with 30% uncertainty - Independent of kinematics and reconstruction Comparison of muon lifetimes from $CCI\pi^{\dagger}$ data sample μ⁻ lifetime # WS BG Constraints: Summary | Measurement | WS uncertainty | resultant $\overline{\nu}_{\mu}$ σ error | |-------------------|----------------|---| | cosθ _μ | 7% | 2% | | CCIπ ⁺ | 15% | 5% | | μ Lifetimes | 30% | 9% | Note can only measure overall rate of WS BGs, not energy spectrum ## Status of \overline{V}_{μ} os - Very few data, especially at low energy - Not much understanding of nuclear targets - \overline{v}_{u} CCQE - ~1700 events - $\overline{\nu}_{u} NC\pi^{0}$ - Only one (1) measurement ever. - $\overline{\nu}_{\mu}$ CCI π^{-} - ~1300 events ## ν_μ CC QE Scattering - Few $\overline{\nu}_{\mu}$ QE measurements - None below I GeV - MiniBooNE expects ~40,000 CCQE interactions before cuts for 2E20 POT ## ν_μ CC QE Scattering Few ν μ QE measurements None below I GeV MiniBooNE expects ~40,000 CCQE interactions before cuts for 2E20 POT #### -V_μ CC QE Scattering | <e></e> | Experiment | target | date | #QE evts | |---------|------------|--|------|----------| | 2 GeV | Gargamelle | C ₃ H ₈ CF ₃ Br | 1979 | 766 | | I.3 GeV | BNL | H ₂ | 1980 | 13 | | I6 GeV | FNAL | NeH ₂ | 1984 | 405 | | 6-7 GeV | SKAT | CF ₃ Br | 1988 | 92 | | 9 GeV | SKAT | CF ₃ Br | 1990 | 159 | | 5-7 GeV | SKAT | CF ₃ Br | 1992 | 256 | | | | | | 1691 | # $\overline{\nu}_{\mu}$ NC π^{0} - Only one measurement of $\bar{v}_{\mu} X \rightarrow \bar{v}_{\mu} N \pi^{0} X$ to date 1 - 25% uncertainty at 2GeV - Important for \overline{V}_e appearance searches - Coherent production more apparent in antineutrino scattering ¹This appeared as a footnote in Faissner et al., Phys. Lett. 125B, 230 (1983) # ¬_μ CCIπ Events | <e></e> | Experiment | target | date | #CCIπ¯ evts | |-----------|------------|--|------|-------------| | I.5 GeV | Gargamelle | C ₃ H ₈ CF ₃ Br | 1979 | 282 | | 5-70 GeV | FNAL | H ₂ | 1980 | 247 | | 5-200 GeV | BEBC | D ₂ | 1983 | 300 | | 25 GeV | BEBC | H ₂ | 1986 | 375 | | 7 GeV | SKAT | CF ₃ Br | 1989 | 120 | | | | | | 1324 | - Expectations for MiniBooNE - CCQE - NCπ0 - νμ Disappearance - ve Appearance - SciBar Detector in Booster Neutrino Beam ## V_μ CC QE Scattering - Expect ~32,000 $\overline{\nu}_{\mu}$ CC QE interactions within fiducial volume for 2E20 POT - MiniBooNE's current CC QE event selection: - Tank (>100) & veto (<6) PMT hit cuts - Fisher discriminant cu: event topology - Select single, μ-like ring - Using CC QE event selection, ~19,000 total events - 75% pure QE (30% of those are WS) - May be improved with further $\overline{\nu}_{\mu}$ refinements - Using WS constraints, expect to measure $\bar{\nu}_{\mu}$ CC QE cross section with ~20% uncertainty # $\overline{\nu}_{\mu}$ NC π^{0} - Expect >5000 $\overline{\nu}_{\mu}$ NC π^0 events within fiducial volume for 2E20 POT - MiniBooNE's event selection requires: - Tank (>200) & veto (<6) PMT hit cuts - Two-ring reconstruction - $m_{\pi^0} > 50 \text{ MeV/c}^2$, $E_{\gamma} > 40 \text{ vMeV}$ - Application of event selection should yield - 1650 resonant events - I 640 coherent events (Rein & Sehgal) - ~I000 WS events Reconstructed π^0 mass ## ν_μ Disappearance - Oscillation appearance searches are sensitive to CPV, but not CPTV - Need disappearance search as well to distinguish between CPV and CPTV - MiniBooNE can perform both searches - Shown: CPT violating case - ν_{μ} do not oscillate, but $\overline{\nu}_{\mu}$ do oscillate - Note: no existing limits on CPTV v_µ disappearance ## V_e Appearance - Recall, LSND oscillations were seen in antineutrinos - $\bullet \overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ - True confirmation can only be made with antineutrino running! - Shown: appearance sensitivity region for antineutrino oscillations in the case of no oscillations in neutrinos - Compare to LSND-KARMEN joint analysis allowed region - Statistics limited! ## A Window of Opportunity - K2K beam operations terminated in early 2005 - SciBar detector became available for use - A new collaboration has formed to bring it to FNAL and place it in the Booster Neutrino Beam upstream of MiniBooNE: SciBooNE - Subdetectors: - SciBar - Electron Catcher (EC) - Muon Range Detector (MRD) - Already commissioned, well understood ## BNB $\bar{\nu}_{\mu}$ CCQE in SciBar - SciBar has the ability to detect the recoil proton track from CCQE events - Can use this to constrain the WS BG in antineutrino running, including the energy spectrum! ## SciBooNE Physics Goals - SciBar Physics - Radiative Δ decay - Energy dependence of NCπ0 production - Exclusive π -p final states - Leveraging MiniBooNE - WS BG constraints - v_{μ} , \overline{v}_{μ} disappearance - Intrinsic v_e flux - Helping T2K - $CCI\pi^{+} \sigma 5\%$ - NCπ⁰ σ 10% - $\bullet \overline{v} \sigma s$ ### SciBooNE Schedule - K2K beam operations halted in March, 2005 - Submitted report on physics potential to Fermilab directorate 10 June, 2005 - Director's Review II October, 2005 - Will present proposal (P-954) to PAC in December, 2005 - Hope to have detector in place collecting beam data before end of 2006 - Current construction schedule requires ~9 months ### Conclusions - MiniBooNE can open up the antineutrino cross section landscape with just one year of data - We have developed several novel techniques to constrain the overall level of WS BGs - Approved to run through end of 2006 - Will decide when to switch to antineutrino mode mid-November - SciBooNE: collaboration to bring SciBar to BNB #### MiniBooNE antineutrino running: - "Addendum to the MiniBooNE Run Plan: MiniBooNE Physics in 2006" - http://www-boone.fnal.gov/publicpages/loi.ps.gz #### SciBar at BNB - "Bringing the SciBar Detector to the Booster Neutrino Beam" - http://home.fnal.gov/~wascko/scibar.pdf # \overline{V}_{μ} NC π^0 • Given the K2K coherent CCI π search, antineutrino running should be very interesting! (And very obvious.) ## Experimental Setup - Place SciBar on-axis 100 m from target - Bring SciBar and EC from Japan - Assemble MRD from salvaged parts from old fixed-target experiments at FNAL ## BNB $\bar{\nu}_{\mu}$ CCQE in SciBar - I-track/2-track studies allow extraction of energy spectrum of WS BGs - Improves cross section and oscillation measurements! - Studied several detector locations to maximize physics output - Balance neutrino flux and spectrum, event rates, and cost - Studied 8 locations in detail - On-axis location has best physics potential Total v flux and mean energy in BNB for different detector locations - As off-axis angle increases: - Flux and mean energy decrease - WS fraction increases - These effects conspire to dilute the effectiveness of the WS BG constraint - On-axis is the best option